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OF ASTRUCTURAL COMPONENT USING THE PARIS FORMULA
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Abstract

An attempt has been made to present a probabilistic method to determine fatigue life of an aeronautical
structure’s component by means of a density function of time a growing crack needs to reach the boundary condition.
It has been assumed that in a component of a structure given consideration there is a small crack that grows due to
fatigue load affecting it. After having reached the boundary value the component in question loses its usability. Time
of the crack growth up to the boundary value is termed a fatigue life of the component. From the aspect of physics, the
propagation of a crack within the component, if approached in a deterministic way, is described with the Paris’s
relationship for m = 2. To model the fatigue crack growth a difference equation has been applied, from which the
Fokker-Planck equation has been derived to be then followed with a density function of the growing crack. The in this
way found density function of the crack length has been applied to find density function of time of reaching the
boundary condition. This function has been used in the present paper to determine the randomly approached fatigue
life of a component of a structure.

The present paper has been prepared for the case there is coefficient m = 2 in the Paris formula. With the in the
paper presented scheme, one can find fatigue life of the structure’s component for the case m # 2.
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1. Introduction

A matter under consideration is a method to determine fatigue life of a structural component of

an aircraft. The following assumptions have been made:

- the component’s health/maintenance status has been determined with one parameter only, i.e.
the length of a crack therein. The actual value of the parameter has been denoted with I,

- any change in the crack length may only occur in the course of the system/device being
operated,
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- in the case given consideration the Paris formula takes the following form:
m
2

dl m m
d_NZ:CMk(Gmax) 7?l ! (1)
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where:

C, m - material constants,

N; - avariable that denotes the number of the component-affecting load cycles due to the system’s
vibration,

My - coefficient of the finiteness of the component’s dimensions at the crack location,

omax - Maximum load defined with equation (2),

- the load upon the structure’s component, with the system’s vibration taken into account, is
a destructive factor. Let us assume we’ve got a component-affecting-load spectrum, with account
taken of vibration. The spectrum allows for the determination of:

- the total number of load cycles N, in the course of one flight assumed a standard cycle,

- maximum loads within thresholds in the assumed spectrum amount to o™, 07", ...,o™

(the assumed number of thresholds in the spectrum is L),
- the number of repetitions of specific threshold values of the loading during one flight

(standard load) n;, where:
L

Ne=>n,

i=1
- maximum values of loads within the assumed thresholds are found in the following way:

max min
o™ + o,
o ="l 410", 2
. 2
where:

o™ - maximum value of the cyclic load within the i-th threshold,
o™ - minimum value of the cyclic load within the i-th threshold,

o - the amplitude of the cyclic load within the i-th threshold.

- The following frequencies of the occurrence of loads correspond to values thereof within the

thresholds o™, o™, ..., o™
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2. An outline of the method to determine probability density function of the component’s crack
length

Relationship (1) may be expressed against the flying time of the aircraft. Therefore, we assume
that:

N, = At, @)
where:

A - the occurrence rate of load cycles upon the component,

t - flying time of the aircraft.

In the case under consideration:
1

= E 3
where At - the average duration of the vibration-attributable fatigue-load cycle.

A
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The relationship (1) against the flying time takes the following form:

% = /,{’CM Iin(amax )mﬂ:
Having applied the hitherto made assumptions, one can proceed to determine the relationship
that describes the dynamics of the fatigue-crack growth, i.e. of the increase in its length.
Let U;; denote the probability that at the time t (for the flying time equal to t) the crack reaches
the length I. With the above-shown notation used, the dynamics of the crack length increase can be
described with the following difference equation:

UI,t+At = F)1U|7A|1,t + PZUI—AIZ,t LRI + PLUI—AIL,t' )

N3
N3

| (4)

where:
- probability that the load o™ defined with equation (2) occurs, where i=123,.....,L and
PR+P+P+...+P =1,
Al; - crack increment in time At for the load equal to o™, where i=1,2,3,.....,L. The increments
are to be found on the grounds of the dependence (4).
Equation (5) in function notation takes the following form:

L

uI,t+At z U AIl ’t (6)

i=1
where u(l,t) - the probability density function of the crack length, which depends on the flying time
of the aircraft.
The difference equation (6) can be rearranged in the following partial differential equation of
the Fokker-Planck type [3]:
ou(l,t) ou(l, t) o°u(l,t)
—_— T — t .
p a)—— 3 ﬂ( ) e

A particular solution of equation (7) is the crack-length density function of the following form:

(7)

1 (=B
- e 2A(t) (8)

udt= J2A(0) ’
where:

B(t) - an average crack length for the aircraft’s flying time t,
A(t) - crack-length variance for the aircraft’s flying time t.
Equation (8) for the total flying time takes the form:
1 _(1-B(ty))?
u(hty) =————e ", )

N 27A(ty,)

N - the number of flights by the aircraft,
ti - duration of the i-th flight.

Coefficients B(ty) and A(ty) for the material constant m = 2 are solutions of the integrals [3]:

B(t,) = ja(tN )t = I, e 1), (11)
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A = At )0t = G 0le S 1), (12)
where: 0
C, =C,E[(c"™)’],
C,=CM/r,
e E[(GmaX)A] '
(E[(c™)?])?

3. An outline of the method to find the probability density function of time of exceeding
the permissible (boundary) value by the length of the crack in the component, for m =2

Using the density function of the crack length (9) dependant on the flying time of the aircraft,
one can determine the probability that the actual length of the crack in the aircraft structure’s
component exceeds the permissible value within the time interval (0, ty). The relationship is as
follows:

Qltly)= full.t, o, (13)

where lq - the permissible value of the crack length as determined for some assumed risk of failure
to the structural component.

The probability density function of the flying time up to the moment the crack exceeds the
permissible value will be determined by the following equation:

f(t)=atiQ(tN,Id)- (14)

From equation (14) the following is derived:

(15—l ("% —1)AC,e* ™)

f (tN g ) = U(Id ty Ilo/ﬁtczeﬂcztN + (ezﬂcth ~1)

1 (15)

where:
(Ig o (752N —1))?

U(|d ,tN) — 1 — 1 — e Igaw(e“@'“ -1) . (16)
\/27z(2|§c2w(e”cz‘~ -1)

The way of finding the probability density function of time of exceeding the permissible
condition (15) is given in [3], pp. 87-90.

4. An outline of the way of estimating life of the aircraft structure’s component, with the
probability density function of time of exceeding the permissible condition for m =2

The formula for the reliability of the aircraft structure’s component can be written down in the
form:

R(t,) :1-} f(ty,1,)dt, (17)

where the probability density function f(ty,lq) is given by the formula (15).
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The unreliability of the component is then defined by the equation:

t ACt ~ a24C,t
— o, (g —1o(e™ " —DAC,e”*)
Qlty )= IU (It JIpAC €7t 4 240 (ezz@tN _1) ; Jat,

0

where u(ly ,ty) is determined with the formula (16).

(18)

The integral (18) should be re-arranged in the simpler form and the problem reduced to solving

the indefinite integral:
[RICHALS

The following change has been made in the integrand:

(Id;lo(e/miN _1))2 — (Io(iﬂCZtN _E)_Id)2 .
12C,0(e** "™ 1) 12C,(e** ™ ~1)

e e

Expression “1” is to be replaced with expression “2”, and expression “2” is denoted with z:

(o€ - -1y)° _

12C,m(e?CN —1)

Hence,

dz _ 2[l, ("M ~1) ~ 1,11, AC, M [I2C,0(e™  ~1)] [l ("M ~1) -1, ]*21EC, e

dt 14C, & (€% —1)°

Az 213C, Aafly (€% —1)—1,](€¥CM —1)e* —2412C, " afl, (5 —1)— 1,17 2%

dt I(L)lc_zza)Z (EZAEZIN _1)2

dz 2 Al ("M ~1)—I,](e**% —1)e" M — 241, (7% ~1) 1,7

dt Iga) (ezzFZtN _1)2

|§a) (eszZtN _1)2

dt = — 2 — — —
21y ALl (e —1) —141(€* ! —1)e N — 21, (e*°N —1) —1,]7e** N

Then, the substitution has been made in the indefinite integral:
[(l; —lo ("% ~1)]AC,e* %
(e21C72tN _1)

~ _ACt
[1oACe* M +

X[ IOZO) (e21C72tN _1)2
2|0/1[|0(e’1C2tN —1)—|d](ez’m2t“ _1)eﬂCth — 2], (eﬂCZtN ~1)-1, ]262,1c2tN
X — L — e ‘dz.
JA2C,w(e¥ %M 1))
Hence,

1 AC,t 22C,t AC,t 22C,t
—— [l Ae"=2N (g 2N 1)+ (1, —1,(e”~2N —1)]Ae“" 2N ]x
N;j[o ( ) +(Ig = o )] ]

1 ie*Zdz.

X[I Mezz@m _1)eﬂ€2tm +[A0, 1 (ezcth —1)82/1072%] \/E
0 d o
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Therefore, the following is arrived at:

B
NI AR
After the rearrangements the indefinite integral (21) takes the following form:

ﬁ | %ezdz | (22)
Then, the second substitution has to be made in the integral (22), which should take the form:
zZ=w,
dw 1
dz 27
dz
v
dz = 2wdw . (23)

The dependence (23) is inserted in the integral (22). Hence, the following is arrived at:

2w,

W 2wdw = G (24)

el

One more substitution:

daw=3 (25)

ﬁje 2 dy, (26)

where y takes value determined with the dependence (27), since

2 ACoty 1y 1 \2
Y_sz’ W=Az, Z:(lo(e N -D)-1y)

2 12C,m(e? M —1)

" J(Io(e*% -1 -1,y

12C, (¥ —1)

W= (Io(emiZtN _i)_ld) 1
JI2C (% —1)
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y2 =2W2,
y =2wW?,

y=wy2=+2 (IO(E_@N bla) 27)
JI2C (e 1y

Having inserted the results gained in the equation (17) and remembering about a suitable
notation of the limits of integration, the following dependence for the reliability is arrived at:

MO
R(t)=1-— | e 2dy, 28
0 =1-—7— j y (28)
where equation (27) should be substituted for the upper limit of the integral y(t).

The cumulative distribution function for the standard Gaussian (normal) distribution takes the
form:

Xy
Q)(x):%je 2 dy.

With the above-shown dependence taken into account, the formula for the reliability of the
structure’s component is expressed with the following equation:

R(t,) =1-®(/2 ('O(e_mzm —D-1) ). (29)
J2C,0(e% —1)

Hence, reliability of the structure’s component will be determined with the following
dependence:
5 o &N 1)1y
1§ Com(e®* 2N 1) y2

A= | et (30)

Having found (assumed) the level of risk of a failure to the structure’s component, i.e. the level
of exceeding the permissible value of the length of a crack in this component, we get:

—00

Qty)=Q". (31)
Hence,
Q _ﬂ[oe dy . (32)

For the assumed value of Q’, the value of the upper limit of the integral (for which the integral
on the right side of the equation (32) takes value Q") is to be found in the standard Gaussian
distribution tables.

Hence, the following dependence is arrived at:

9=zl Dl (33)
J2C,0(e% —1)

4 (o ("™ —1)-1,)
V20 -
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We assume that
9

LA
V2

o (@ D 1)
\/IOZC_ZG)(EU.CZtN _ 1)

Hence,

9 (34)
From (34) we can find time t,,, for which the equality relation (34) takes place. Time t; will

be the searched life of the structure’s component, i.e. it will be the aircraft’s flying time for the
assumed risk of exceeding the permissible value of the crack length. We assume that:

'Cetv = x, (35)
Hence,
19* _ (IO (X _1) B Id) (36)

G -1

From (36) we can find x. With some specific value of x gained from the dependence (35), we
can find ty,:

AC,ty

e =X,

AC,ty =Inx,

« Inx

t, =—. 37
TS (37)

Formula (37) determines fatigue life of the aircraft structure’s component t,, for the assumed
risk of exceeding the boundary condition Q".

5. Final remarks

What has been presented in the paper is an outline of a method to determine fatigue life of an
aircraft structure’s component. What provokes a fatigue process is a random load in the form of
load spectrum. It should be emphasised that it is possible to find fatigue life of a component using
a more complex load spectrum. It has been assumed in the paper that the sequence of load cycles,
as far as values thereof are concerned remains of no effect upon the crack growth rate. All the
dependences arrived at enable specific calculations, if we have values of material constants and
data on the load spectrum.

The present paper has been prepared for the case there is coefficient m = 2 in the Paris formula.
With the in the paper presented scheme, one can find fatigue life of the structure’s component for
the case m # 2.
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